If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10r^2+6r=0
a = 10; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·10·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*10}=\frac{-12}{20} =-3/5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*10}=\frac{0}{20} =0 $
| 2/3n-1=1/4*12 | | 7(v+10)=98 | | -10j-8=-9j | | 3r=12=r+34 | | 8=4r+12 | | 32=-8c | | 10(z+3)=5(z+8) | | 3/4(x+4)=10 | | x+75/20=1/4x | | 0.85(p−150)=p | | 2v-4=10 | | 95−63=x−60 | | 43=9(1+10b)-8(10-3b) | | m+19/5=4/5 | | x^2+90x-27000=0 | | 43=9(1+10b)-8(10-3b | | 1=u2–2 | | 31=q6+29 | | 2g-2=12 | | 11x^2+15x-28=0 | | 19=3(1-8r)+8(2-2r) | | 9x+8x=24 | | 11x^2+15x-28=9 | | m/5=0 | | -7x+2x^2-4=0 | | -5=5(-3x-9)-2(x-3) | | 6(x-3)+7=13 | | n/5-8=-3 | | -2x=4+9 | | 3(x3)-26=4x-12 | | 15-q=18 | | a+0.2=0.5a-0.7 |